Large Scale Text Classification using Semisupervised Multinomial Naive Bayes
نویسندگان
چکیده
Numerous semi-supervised learning methods have been proposed to augment Multinomial Naive Bayes (MNB) using unlabeled documents, but their use in practice is often limited due to implementation difficulty, inconsistent prediction performance, or high computational cost. In this paper, we propose a new, very simple semi-supervised extension of MNB, called Semi-supervised Frequency Estimate (SFE). Our experiments show that it consistently improves MNB with additional data (labeled or unlabeled) in terms of AUC and accuracy, which is not the case when combining MNB with Expectation Maximization (EM). We attribute this to the fact that SFE consistently produces better conditional log likelihood values than both EM+MNB and MNB in labeled training data.
منابع مشابه
A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملA New Fine-Grained Weighting Method in Multi-Label Text Classification
Multi-label classification is one of the important research areas in data mining. In this paper, a new multilabel classification method using multinomial naive Bayes is proposed. We use a new fine-grained weighting method for calculating the weights of feature values in multinomial naive Bayes. Our experiments show that the value weighting method could improve the performance of multinomial nai...
متن کاملTwo-Stage Text Classification Using Bayesian Networks
The“curse of dimensionality”provides a powerful impetus to explore alternative data structures and representations for text processing. This paper presents a method for preparing a dataset for classification by determining the utility of a very small number of related dimensions via a Discriminative Multinomial Naive Bayes process, then using these utility measurements to weight these dimension...
متن کاملA Survey Paper On Naive Bayes Classifier For Multi-Feature Based Text Mining
Text mining is variance of a field called data mining. To make unstructured data workable by the computer Text mining is used which is also referred as “Text Analytics”. Text categorization, also called as topic spotting is the task of automatically classifies a set of documents into groups from a predefined set. Text classification is an essential application and research topic because of incr...
متن کاملMultinomial Mixture Modelling for Bilingual Text Classification
Mixture modelling of class-conditional densities is a standard pattern classification technique. In text classification, the use of class-conditional multinomial mixtures can be seen as a generalisation of the Naive Bayes text classifier relaxing its (class-conditional feature) independence assumption. In this paper, we describe and compare several extensions of the class-conditional multinomia...
متن کامل